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Reflection Positivity of the Random-Cluster Measure
Invalidated for Noninteger q

Marek Biskup1,2
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We consider the random-cluster Potts measure on a lattice torus that weights
each connected component by a positive number q. We show, by constructing
a counterexample, that this measure is not reflection-positive unless q is integer.
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1. INTRODUCTION

Reflection positivity (RP) has long been known to set up a framework for
establishing discontinuous phase transitions in lattice systems.(8,9,7,10,11,3)

As has been shown recently, in the context of models allowing for a graphi-
cal representation, its combination with the latter can substantially reduce
the length of the proofs of phase coexistence.(1,4) In the two-dimensional
g-state Potts model, this technique also offers an easy way to establish that
the transition occurs exactly at the self-dual point(4) and to improve the
method-required bound on q.(2)

The graphical equivalent of the q-state Potts model is the random-
cluster measure(6) (RCM). If we refrain from discussing boundary condi-
tions, RCM is a Bernoulli bond-process modified by assigning the number
q to each connected component. Since q is not stipulated to be integer in
this definition, RCM enables one to think of "extending" the q-state Potts
model to non-integer spin-numbers. Similarly, such "extensions" turn out
to exist also for various alterations of the Potts model, see, e.g., ref. 1.
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It would be plausible to expect that the above technology based on
merging RP with graphical representations encompasses also the con-
tinuous "extensions" of the Potts models. Apparently, this is not the case,
mainly for the lack of RP—the existing proofs go through the Edwards-
Sokal coupling(5) back to the q-slate Potts model and, consequently,
demand that q be integer. For continuous q, one has been left only with
speculations (e.g., about a mapping onto the six-vertex model(2)), so far,
that might yield a direct proof of RP at least in some limited domains of q.

In this paper we demonstrate that, in fact, RP does not hold in RCM
when q is not integer. It should be emphasized that this does not disqualify
the order/disorder phase transition in RCM, since the latter is easily
inferred from the discrete case by monotonicity in q. The counterexample
we construct involves functions that are highly non-local. Therefore,
neither the possibility that RP can be recovered in infinite volume for, e.g.,
local functions is entirely ruled out.

The rest of the paper is organized as follows. In the next section we
give a definition of reflection positivity and state the main result. The proof
comes in the third section. The main tool is a suitable representation
derived in Proposition, that we believe is of some own interest. In the
proof, we are predominantly concerned with RP w.r.t. hyperplanes con-
taining sites. However, as is commented on in the end, the case of RP w.r.t.
hyperplanes intersecting bonds is fairly analogous.

2. DEFINITIONS AND MAIN RESULT

Let FN be a lattice torus of linear size N, with N being an even integer.
We use B(FN) to denote the set of bonds of 3TN. Let each bond b e B(FN)
be assigned a variable wb taking on values 0 or 1. Let p e [0, 1 ] and q > 0.
Then the random-cluster measure (RCM) on torus FN with parameters p
and q is a probability measure on {0, 1 } B ( F N ) weighting the configuration
w = (wob)beB(FN ) by the expression
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Here Nl(o) = {b: w b = l } , N0(&) = B(F N ) \N l ( (a) , and C(co) is the number
of all connected components that arise from STN after cutting all bonds from
N0(w) (thus, C(w) includes also the isolated sites). The partition function
ZN provides the appropriate normalization. The expectation w.r.t. Pp , q we
denote by E.

Let P<FN be a hyperplane containing sites, orthogonal to one of
the coordinate directions (we think of P as composed of two antipodal
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components). We use the symbol 9P to denote the reflection w.r.t. P. The
components of P divide FN into two connected parts FN and FN, such
that P = FN n FN and 9PFN = FN. We use F l ( F R ) to denote the set of
observables (functions) depending only on w|B(FN) (w|B(FN), respectively),
where B(A) stands for the set of bonds whose both ends lie in A c yN.

Definition. Suppose a measure P acting on co be given, with the
expectation E. We say that P is reflection-positive iff for every f, g e Jl

The condition (2) typically follows directly from the symmetry of P
w.r.t. the reflection 9P, so the difficult part to check is (3) (hence also the
name). Now we can state our result:

Theorem. Let q < N d - l and p e ( 0 , 1 ) . Then the random cluster
measure Pp,q on FN is reflection-positive if and only if q is a positive
integer.

Remark. The singular case of p = 0 or 1 leads to Pp,q supported on
a single (symmetric) configuration. It follows that P0,q and P1,q are reflec-
tion-positive for all q > 0.

3. PROOF

Fix a hyperplane P c yN. The main idea of the proof is to classify the
configurations in B(fN) according to the partitions of P into connected
sets induced thereby. In this way a representation of the l.h.s. of (3) can be
derived that bids an opportunity to choose f so that the reflection positivity
of RCM is violated.

Let wf be a configuration in B ( F N ) \ B ( P ) , w P a configuration in
B(P), and let us use the symbol wl v wp to denote the corresponding
joint configuration in B ( F N ) . Then there is a one-to-one correspondence
between the partitions of P into sets whose elements are mutually connected
via N1(wl v w p ) , and the graphs G on P whose components are complete
graphs. Namely, an edge (i, j) e G iff i and j (eP) are connected (i.e., absence
of the edge means that the sites are disconnected). We use XG to indicate
configurations giving rise to G. Let
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where C& (wL) denotes the number of the connected components of wl
disconnected from the set N 1 (Wp) . Then we have the following representa-
tion of (3):

Proposition. For each f e J l , G, and wp let fG(wP) =
Lal [fxG W l ](wl v wp). Then

where l(G) denotes the number of components of G.

Proof. We begin with q integer and then use analytic continuation.
For integer q, one can devise a coupling(5) between RCM and the Potts
model with q spins and e -j = 1 — p. Namely, the measure

(where < • , • > denotes nearest-neighbour sites) has RCM of (1) as its
w-marginal, whereas the ff-marginal is easily identified with the Potts
model at the above inverse temperature. If we set

then the Edwards-Sokal measure allows us to represent E(f9Pf) as follows

where the function

guards that ap stays consistent with wp.
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Now we would like to get the above graphs into play. This is done by
observing that unity can be written as

where the summation goes over all partitions of P (i.e., graphs on P whose
connected components are complete graphs) and where the products run
over unordered pairs of sites of P.

We insert this expression in (8), just before the square bracket. If &P

and op are such that the product of A- and d-factors equals one, then two
important consequences can be drawn for the summations inside the
brackets: first, the graph corresponding to wl v wp must be a subgraph of
G (sites of P with different spins must not be connected). Second, if also the
latter holds, then the summation over ol yields a number independent
of dp. This number is easily identified with Wy, from (4).

With these findings, (8) can be rewritten as

Note that the very last sum gives exactly one whenever wl v wp is consis-
tent with G. Now there is nothing to constrain the summation over GP any
more (note that also d (w P , aP) = 1 automatically for wp, ap consistent
with G), which gives us the desired claim for all q integer.

For q non-integer, we use continuation in q. First observe that (5) is
expressed purely in terms of RCM. Then multiplying both sides by ZN, we
recover an equality between polynomials in q. Since (5) holds for all
positive integers, we conclude that it holds for all q real (in fact, even q
complex, by continuity). |

Proof of Theorem. The integer case is a direct consequence of (5).
For q non-integer, we describe a counterexample. Let us choose wp such
that the set of its connected components C ( w P ) is large enough. Let us set

where Swp induces wp on B(P) and the sum restricts to such graphs G
that bG = Lwl [ X G W l ] ( m l v wP) >0- We gather the latter graphs in the
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set $. Note that g # 0, since the minimal graph G, exhibiting only the
connections within <p, always belongs to g (as p # 0, 1, the configuration
wl v wp with N1(wl) = 0 gets always some non-zero weight under Wl).

We shall show that the numbers aG can be chosen so that the system
of |g| linear equations

where A g ( . ) indicates G, are satisfied. For that let us introduce a linear
order < on S, respecting inclusions (i.e., G c G' implies G < G ' ) . Such a
linear order always exists, as can be easily proved by induction. In the basis
labelled according to -<, the l.h.s. of (13) is clearly represented by the
lower-triangular matrix BG, G, = bG' 1 { G ' < G } , with all the diagonal entries
non-vanishing. Consequently, BG, G, is invertible and (13) can be solved in
favour of a non-trivial (aG)Gey.

Now it remains to convince oneself that the formulas (12, 13) imply
that

which boils down to checking that only the term with G = G contributes to
the sum over G in (5). If we now choose wP such that q + 2 > \C(w P ) | >
q+1, then the expression (14) is blatantly negative, since only the last term
(q— |C(&P)| + 1) <0. Hence, (3) does not hold in general, unless q is
integer. |

Remark. The proof we just gave deals with RP w.r.t. hyperplanes on
sites. The argument is readily adapted also to the case of hyperplanes inter-
secting bonds. Namely, in order to derive (5) one has to mind only the
following: first, wP is the restriction of to to the bonds that intersect P,
second, the connectedness issues handled above by XG concern now the
bonds from N 1 (wp) , and third, it is the spins congruent with these bonds
that are responsible for the crucial prefactor in (5). Once the relation (5)
is established, the formulas (12-14) can be taken over almost literally to
obtain the desired result.
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